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Abstract
We provide a proof of existence of stationary states in the three-dimensional
Lorentz model for Maxwell particles accelerated by an external field and
suffering inelastic collisions. Any non-zero inelasticity is sufficient to stabilize
the system, irrespective of the field strength, and an explicit form of the solution
is given in the limit of weak inelasticity. The proof extends to the case of
particles interacting with a thermostat.

PACS numbers: 05.20.Dd, 51.10.+y, 05.60.−k

1. Introduction

The object of this study is the stationary velocity distribution of a particle immersed in a
scattering medium and subject to the action of an external field. Owing to the coupling to the
field, the particle moves with a constant acceleration a. The accelerated motion is interrupted
by binary collisions with the scatterers distributed in space with a constant number density ρ.

The analysis performed here is based on the Boltzmann equation. Consequently, the
moving particle is supposed to encounter always new scatterers whose steady state has not yet
been perturbed by its motion. This leads to a linear kinetic equation for the velocity distribution
of the particle. Rather then considering the hard sphere interaction we choose here the so-
called Maxwell model: we assume an isotropic scattering, but in contrast to the case of hard
spheres, the cross-section is supposed to decrease as the inverse power of the relative velocity
of the colliding pair. With this choice, the collision frequency is independent of the energy of
the relative motion which greatly simplifies the mathematical problem allowing an effective
use of the Fourier transformation. This simplification has already been noticed a long time
ago and exploited in a number of publications (see e.g. [1, 2]). An interesting review of the
Maxwell model has been given in [3]. We benefit here from the structure of the Maxwell
model to prove the existence of nonequilibrium stationary states. In this paper, we consider
both the case of immobile scatterers uniformly distributed in space (the Lorentz model) and
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the case of mobile scatterers in thermal equilibrium. The relevant equations for the stationary
states are recalled and presented in various forms in section 2.

The existence of a stationary state requires the possibility for the particle to dissipate the
kinetic energy imparted by the external field. In the Lorentz model, the dissipation mechanism
is provided by the energy transfer to the internal degrees of freedom phenomenologically
modelled by a restitution parameter less than 1. When the particle is in contact with a
thermalized fluid, there is an additional relaxation mechanism through collisions with the
particles of the thermostat. The main issue is therefore, for the Lorentz model, to prove that
the loss of energy due to inelasticity balances the energy absorbed from the external field, thus
assuring the stabilization of the system.

For the one-dimensional Lorentz model in an external field, the stationary problem has
been studied earlier in relation with runaway processes resulting of the energy imbalance due
to the lack of dissipation [4] (and see the references quoted therein). The authors formulate
general conditions on the kernel of the collision operator that rule out runaway phenomena and
guarantee the existence of a stationary state. Later, the case of inelastic collisions (still in one
dimension) was considered specifically and an explicit solution was constructed in terms of
the restitution parameter and field strength [5]. In the present paper, we extend the analysis to
the three-dimensional Lorentz gas when the cross-section has the Maxwell form (section 3.1).
This extension is not straightforward because of the intricate angular dependence brought in by
three-dimensional collisions. We prove the existence of the stationary state for any non-zero
inelasticity and any field strength, and give the explicit form of the solution in the limit of weak
inelasticity (section 3.2). We emphasize the crucial role played by the inelasticity. It is shown
for instance in [6] that in one dimension the kinetic energy of the particle grows indefinitely
in time. This fact is also illustrated in our paper for the three-dimensional Maxwell gas in
equation (27): one sees that the mean kinetic energy diverges in the elastic limit, reflecting the
unbounded absorption of energy from the accelerating field ruling out any stationary state.

In section 4 we show that the stationary state of the accelerated particle in a thermalized
fluid can be written as a convolution of a Maxwellian distribution with the previously found
solution for the Lorentz gas, a remarkably simple structure. Here the stationary state exists
even when collisions are elastic since the particle can now dissipate energy in the fluid.
When the inelasticity is different from zero, the Maxwellian distribution carries an effective
temperature lower than that of the thermostat. This effective temperature is the same as that
obtained by the particle undergoing dissipative collisions in absence of an external driving
field [7].

2. Kinetic equations

We denote by m and M the mass of the propagating particle and the mass of the scatterer,
respectively. Both particles are assumed to be spherically symmetric. At binary collisions,
the momentum remains conserved:

mv + MV = mv′ + MV′. (1)

Here v and V denote the precollisional velocities of the particle and of the scatterer, respectively.
They are instantaneously transformed into the primed velocities v′ and V′ after collision.

The change in the relative velocity (v − V) can be conveniently described by considering
the unit vector σ̂ oriented along the line passing through the centres of the colliding pair at
the moment of impact. The normal component (velocity of approach) then suffers the reversal
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and reduction (dissipation)

σ̂ · (v′ − V′) = −ασ̂ · (v − V), 0 � α < 1, (2)

whereas the tangential component remains unchanged; α is the restitution parameter.
Combining equations (1) and (2), we obtain the transformation law induced by inelastic

collisions

v′ = v − µ(1 + α)[σ̂ · (v − V)]σ̂

V′ = V + (1 − µ)(1 + α)[σ̂ · (v − V)]σ̂,
(3)

where

µ = M

m + M
.

Equation (2) implies that the inverse transformation is simply obtained by replacing α by
1/α. Hence, the precollisional velocities

v′′ = v − µ

(
1 +

1

α

)
[σ̂ · (v − V)]σ̂

V′′ = V + (1 − µ)

(
1 +

1

α

)
[σ̂ · (v − V)]σ̂

(4)

yield after collision the velocities v and V. Let us also note the relations

ασ̂ · (v′′ − V′′) = −σ̂ · (v − V), α dv′′ dV′′ = dv dV. (5)

We consider the linear Boltzmann equation for the stationary velocity distribution f (v)

of the propagating particle interacting with a thermal reservoir at temperature T. Assuming
the differential cross-section proportional to |v − V|−1 (the Maxwell model) and denoting the
proportionality constant by κ , the stationary state must obey the equation

a · ∂

∂v
f (v) = κ

λ

∫
dV

∫
dσ̂

π
[σ̂ · (v − V)]θ [σ̂ · (v − V)]

×
{

1

|v′′ − V′′|
1

α2
f (v′′)φT (V′′) − 1

|v − V|f (v)φT (V )

}
, (6)

where λ is the mean free path:

λ−1 = πρ(d + D)2/4, (7)

d and D denote the particle and the scatterer diameters, respectively, the Maxwell velocity
distribution

φT (V ) =
(

M

2πkBT

)3/2

exp

(
−MV 2

2kBT

)
(8)

represents the thermal bath, θ(x) is the unit Heaviside function and kB is the Boltzmann
constant. The left-hand side of (6) is the drift term due to the accelerating field. The
collision term (the right-hand side of (6)) is essentially the same as in equation (6) of [7], after
modification of the hard sphere cross-section to the Maxwell one, i.e. after dividing by the
relative speed (the factors |v′′ − V′′|−1 and |v − V)|−1 in the curly brackets)3. With the use of
relations (5), it can be checked by a straightforward calculation that the collision term in (6)
vanishes when integrated over the velocity space in accordance with the conservation of the
number of particles.

3 In contrast to the present notation, in [7] the mass of the test particle (respectively of the fluid particle) is noted by
M (respectively m). Also the parameter η (13) is µ(1 + α) in [7].
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A particular case of equation (6) is obtained by taking the limit M → ∞ (or µ → 1)
together with limT →0 φT (V ) = δ(V ). We then get the kinetic equation for the Lorentz model
in which the accelerated gas propagates through the medium filled with infinitely massive
immobile scatterers (T = 0) (see equation (3) of [5] adapted to the Maxwell cross-section)

a · ∂

∂v
f (v) = κ

λ

∫
dσ̂

π
[σ̂ · v]θ [σ̂ · v]

×
[

1

|v − (1 + α−1)(σ̂ · v)σ̂|
1

α2
f (v − (1 + α−1)[σ̂ · v]σ̂) − 1

|v|f (v)

]
. (9)

In the general case of T > 0, it is convenient to use the relative velocity w = v − V as
the integration variable. Rescaling by the factor of α the normal component of the relative
velocity (at fixed σ̂ )

σ̂ · w → α(σ̂ · w)

and using the equality∫
dσ̂(σ̂ · ŵ)θ(σ̂ · ŵ) = π, ŵ = w/|w|,

we rewrite the Boltzmann equation (6) as

e · ∂

∂v
f (v) =

∫
dw

∫
dσ̂

π
(σ̂ · ŵ)θ(σ̂ · ŵ)f [v − µ(1 + α)(σ̂ · w)σ̂]

×φT {v − w + [1 − α + (1 − µ)(1 + α)](σ̂ · w)σ̂} − f (v), (10)

where

e = λa/κ.

An even more convenient form of the kinetic equation (10) is obtained when the collision
term is expressed in terms of the unit vector n̂ oriented along the post-collisional relative
velocity for elastic collisions. Putting α = 1, we infer from (3)

n̂ = ŵ − 2(ŵ · σ̂)σ̂ (11)

with the Jacobian of the transformation (σ̂ · ŵ)θ(σ̂ · ŵ) dσ̂/π = dn̂/4π .
Equation (10) finally takes the form

e · ∂

∂v
f (v) + f (v) =

∫
dw

∫
dn̂
4π

f [v − (1 − η)(w − |w|n̂)]φT [v − w + η(w − |w|n̂)],

(12)

where we have defined the parameter

η = 1 − µ
1 + α

2
. (13)

The choice of the Maxwell cross-section allows for simpler forms of the kinetic equations
in the Fourier representation. Fourier transforming equation (12) with

f̃ (k) =
∫

dv eik·vf (v),

φ̃T (p) =
∫

dv eip·vφT (v) = exp

(
− p2

2βM

)
p = |p|

(14)

leads to the convolution

(1 − ie · k)f̃ (k) =
∫

dp
(2π)3

∫
dw ei(1−η)w·k

∫
dn̂
4π

eiwn̂·(ηk−p)f̃ (p)φ̃T (k − p)

=
∫

dp
(2π)3

[∫
dw ei(1−η)w·k

∫
dn̂
4π

eiwn̂·p
]

f̃ (ηk + p)φ̃T ((1 − η)k − p).

(15)
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Using the formula∫
dw eiw·a

∫
dn̂
4π

eiwn̂·b = 2π2

ab
δ(b − a), a = |a|, b = |b|, (16)

the bracket in (15) becomes 2π2δ(p − (1−η)k)/p2, k = |k|, so that performing the p integral
gives

(1 − ie · k)f̃ (k) =
∫

dp̂
4π

f̃ (k(1 − η)p̂ + ηk)φ̃T ((1 − η)(k − kp̂)), p̂ = p
p

, (17)

which is the final form of the equation.
The case of the Lorentz gas is obtained by letting T → 0 and M → ∞. In this limit, one

has φ̃T → 1, µ → 1 and

η → 1 − α

2
≡ ε

(see (13) and (14)) so that

(1 − ie · k)f̃ (k) =
∫

dp̂
4π

f̃ (k(1 − ε)p̂ + εk). (18)

It could as well be obtained by a direct Fourier transform of (9). In section 3 we prove the
existence of the solution to equation (18). The extension to temperatures T > 0 together with
concluding comments is presented in section 4.

3. The stationary state for the Lorentz model

3.1. Existence of the stationary state

Upon introducing the application Cp̂ : R3 → R3

Cp̂(k) = k(1 − ε)p̂ + εk, (19)

equation (18) becomes

f̃ (k) = 1

1 − ie · k

∫
dp̂
4π

f̃ (Cp̂(k)) (20)

and can be solved by iterations. Starting with f̃ 0(k) = 1/(1 − ie · k), the Nth iteration reads

f̃ N (k) = 1

1 − ie · k

∫
dp̂1

4π
· · ·

∫
dp̂N

4π

N∏
n=1

1

1 − iCp̂n
· · ·Cp̂1(k) · e

(21)

and we show below that for fixed k, f̃ N (k) form a Cauchy sequence. Indeed, for M > N ,
one has

f̃ N (k) − f̃ M(k) = 1

1 − ie · k

∫
dp̂1

4π
· · ·

∫
dp̂M

4π

[
N∏

n=1

1

1 − iCp̂n
· · · Cp̂1(k) · e

×
(

1 −
M∏

n=N+1

1

1 − iCp̂n
· · · Cp̂1(k) · e

)]
. (22)

Since Cp̂(k) (19) is real, |1/(1 − iCp̂n
· · ·Cp̂1(k) · e)| � 1. Using this inequality repeatedly

together with ∣∣∣∣∣1 −
j∏

i=1

ai

∣∣∣∣∣ �
j∑

i=1

|1 − ai |, |ai | � 1,
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one finds that the absolute value of the square bracket in (22) is less than
M∑

n=N+1

∣∣∣∣1 − 1

1 − iCp̂n
· · · Cp̂1(k) · e

∣∣∣∣ �
M∑

n=N+1

∣∣Cp̂n
· · · Cp̂1(k) · e

∣∣

� e

M∑
n=N+1

∣∣Cp̂n
· · · Cp̂1(k)

∣∣. (23)

Thus,

|f̃ N (k) − f̃ M(k)| � e

M∑
n=N+1

∫
dp̂1

4π
· · ·

∫
dp̂n

4π

∣∣Cp̂n
· · ·Cp̂1(k)

∣∣

� e

M∑
n=N+1

(∫
dp̂1

4π
· · ·

∫
dp̂n

4π

∣∣Cp̂n
· · · Cp̂1(k)

∣∣2
)1/2

, (24)

where the last inequality follows from the Schwarz inequality and the fact that the angular
measures dp̂j /4π are normalized to 1. One calculates from (19) that Cp̂(k) contracts the norm
of the vector k ∫

dp̂
4π

|Cp̂(k)|2 = k2((1 − ε)2 + ε2) < k2, (25)

implying

|f̃ N (k) − f̃ M(k)| � ek

M∑
n=N+1

(√
(1 − ε)2 + ε2

)n
. (26)

This shows that f̃ N (k) is a Cauchy sequence for all 0 < ε � 1
2 (0 � α < 1); thus

limN→∞ f̃ N (k) = f̃ (k) exists and represents the solution of the stationary equation (9)
in Fourier form, up to a multiplicative constant (since the equation is linear). This constant
is fixed by the normalization condition f̃ (0) = ∫

dvf (v) = 1, and under this condition the
solution is unique. Note that the convergence is uniform with respect to k in compact sets;
hence f̃ (k) is a continuous function of k. It is thus not vanishing identically for k �= 0 since
f̃ (0) �= 0. One can remark that a stationary state exists for all values of the field strength and
of the inelasticity, in particular for an arbitrarily strong field and arbitrarily weak inelasticity.

3.2. The elastic limit

An analytic form of the distribution can be found in the limit of weak dissipation α → 1, ε →
0. For this we could use the (singular) perturbative scheme developed in section 4 of [5]. Here,
we rather extract directly the weak dissipation behaviour from the iterative solution presented
in the preceding subsection. The first moments of the velocity can easily be computed from
equation (9) with the results

〈ê · v〉 = 2e

1 + α
, ê = e

e

〈|v|2〉 = 〈ê · v〉 4e

1 − α2
∼ e2

ε
, ε → 0.

(27)

One sees that the average kinetic energy diverges in the elastic limit as 1/ε, suggesting that
the distribution of the scaled velocity v/

√
ε might have a limit as ε → 0. Equivalently, one is

led to consider the distribution of the scaled Fourier variable
√

εk:

f̃ (
√

εk) = 1

1 − i
√

εe · k
lim

N→∞

∫
dp̂1

4π
· · ·

∫
dp̂N

4π

N∏
n=1

1

1 − iCp̂n
· · · Cp̂1(

√
εk) · e

. (28)
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Note that Cp̂(
√

εk) = √
ε(1 − ε)kp̂ + ε3/2k, implying

Cp̂n
· · · Cp̂1(

√
εk) · e = √

ε(1 − ε)nkp̂n · e + O(ε3/2)

1

1 − iCp̂n
· · · Cp̂1(

√
εk) · e

= 1 + i
√

ε(1 − ε)nkp̂n · e − ε(1 − ε)2nk2(p̂n · e)2 + O(ε3/2),

(29)

where we have expanded the fraction up to order ε. The infinite product in (28), after taking (29)
into account (omitting the O(ε3/2) corrections) and performing the dp̂j integrals, takes the
form
∞∏

n=1

(
1 − ε(1 − ε)2n k2e2

3

)
∼ exp

(
−k2e2

3
ε

∞∑
n=1

(1 − ε)2n

)

= exp

(
−k2e2

3

ε(1 − ε)2

1 − (1 − ε)2

)
∼ exp

(
−k2e2

6

)
(1 + O(ε)) . (30)

Finally, keeping the non-spherically symmetric effect of the external field at lowest order
√

ε

in (28), one obtains

f̃ (
√

εk) = (1 + i
√

εe · k) exp

(
−k2e2

6

)
(1 + O(ε)). (31)

By inverse Fourier transform, the asymptotic (non-scaled) velocity distribution as ε → 0 is
therefore found to be

f (v) ∼
(

1 − e · ∂

∂v

) (
3ε

2πe2

)3/2

exp

(
−3εv2

2e2

)
. (32)

One sees that the spherically symmetric part of the distribution becomes Gaussian as ε → 0.
This is a consequence of the Maxwell form of the cross-section, in contrast with the hard
sphere case where the asymptotic distribution was found to behave as exp(−const εv4) [5].

4. Accelerated particle in a thermalized fluid

We come back to the stationary equation (17) for the velocity distribution of the accelerated
Maxwell particle undergoing collisions in a thermal bath. Setting as before

Cp̂(k) = k(1 − η)p̂ + ηk, (33)

we write equation (17) in the form

F̃ (k) = 1

1 − ie · k

∫
dp̂
4π

F̃ (Cp̂(k) exp

[
−|k − Cp̂(k)|2

2βM

]
. (34)

The notation F̃ (k) is used to distinguish the T > 0 distribution from the distribution f̃ (k)

constructed in the preceding section for the Lorentz gas. In view of the identity

|k − Cp̂(k)|2 = 1 − η

η
(k2 − |Cp̂(k)|2), (35)

equation (34) can be cast in the form

F̃ (k) = exp

(
− k2

2βeffm

)
1

1 − ie · k

∫
dp̂
4π

F̃ (Cp̂(k)) exp

( |Cp̂(k)|2
2βeffm

)
, (36)

where we have defined an effective inverse temperature by

βeff = Mη

m(1 − η)
β = (kBTeff)

−1. (37)
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It is now clear that the function exp(k2/2βeffm)F̃ (k) obeys equation (20) for the Lorentz gas
with ε replaced by η. Therefore, by the same analysis as in section 3.1, there exists a solution
to equation (36) of the form

F̃ (k) = exp

(
− k2

2βeffm

)
f̃ (k), (38)

where f̃ (k) = limN→∞ f̃ N (k) is the limit of the successive iterations (21) constructed for the
Lorentz gas with parameter η. Thus, in velocity space the solution is simply a convolution of
the Lorentz gas-type distribution f (v) with a Maxwellian at effective temperature Teff :

F(v) =
∫

dv′φTeff (v − v′)f (v′). (39)

Equation (39) establishes a remarkably simple relation between the stationary state f in a zero
temperature Lorentz model and the corresponding state F in a thermostat. Since η is strictly
positive as long as the temperature of the host fluid is different from 0 (irrespective of the
value of the inelasticity), see (13), the distribution F(v) is well defined for all 0 � α � 1 and
all values of the field strength e.

The effective temperature (37) characterizes the stationary state in the absence of electric
field as already shown in [7] for a large class of cross-sections (for the notation, see footnote
3). Indeed, when e = 0, f̃ (k) = 1, f (v) = δ(v), then F(v)φTeff (v) reduces to a Maxwellian
distribution with the effective temperature Teff < T . This fact is a consequence of mathematical
equivalence of the dynamics with inelastic collisions with the elastic case with an effective
mass at the level of the Boltzmann kinetic theory [8].

For e �= 0, the field dependence is entirely contained in f (v). The linear response
part of it is obtained by expanding the fractions in (21) to linear order in e yielding, with∫ dp̂

4π
Cp̂(k) = ηk,

f̃ (k) ∼ 1 + ie · k + ie · k
∞∑

n=1

ηn = 1 +
ie · k
1 − η

, e → 0. (40)

When this is inserted in (38), (39) one finds the modification of the velocity distribution to
first order in the field

F(v) ∼
(

1 −
(

1

1 − η

)
e · ∂

∂v

)
φTeff (v). (41)

Thus, the mean velocity at order e equals

〈v〉 ∼ e
1 − η

, (42)

which agrees with (27) in the Lorentz model limit M → ∞. Note that the current (42) is
temperature independent, a peculiarity of the Maxwell gas.
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